HW PROBLEMS SET 1: ARGUMENT BY CONTRADICTION, INDUCTION

1. Prove that $\sqrt{2}+\sqrt{3}+\sqrt{5}$ is an irrational number.
2. Find the least positive integer n such that any set of n pairwise relatively prime integers greater than 1 and less than 2005 contains at least one prime number.
3. Show that there does not exist a strictly increasing function $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfying $f(2)=3$ and $f(m n)=f(m) f(n)$ for all $m, n \in \mathbb{N}$.
4. Show that the interval $[0,1]$ cannot be partitioned into two disjoint sets A and B such that $B=A+a$ for some real number a.
5. Consider a collection of N planes in \mathbb{R}^{3} which all pass through the same point, but no 3 of them intersect at the same line. How many parts do they cut the space into?
6. Prove that for any real numbers $x_{1}, x_{2}, \ldots, x_{n}, n \geq 1$,

$$
\left|\sin x_{1}\right|+\left|\sin x_{2}\right|+\ldots+\left|\sin x_{n}\right|+\left|\cos \left(x_{1}+x_{2}+\ldots+x_{n}\right)\right| \geq 1 .
$$

7. Let k be a positive integer. The n-th derivative of $\frac{1}{x^{k}-1}$ has a form $\frac{P_{n}(x)}{\left(x^{k}-1\right)^{n+1}}$, where $P_{n}(x)$ is a polynomial. Find $P_{n}(1)$.
